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Abstract

Several per- and polyfluoroalkyl substances (PFAS) have been measured in U.S. National Health 

and Nutrition Examination Survey (NHANES) participants 12 years of age and older since 1999–

2000, but PFAS data using NHANES individual samples among children younger than 12 years do 

not exist. To obtain the first nationally representative PFAS exposure data in U.S. children, we 

quantified serum concentrations of 14 PFAS including perfluorooctane sulfonic acid (PFOS), 

perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic 

acid (PFNA), in a nationally representative subsample of 639 3–11 year old participants in 

NHANES 2013–2014. We used on-line solid-phase extraction coupled to isotope dilution-high 

performance liquid chromatography-tandem mass spectrometry; limits of detection were 0.1 

ng/mL for all analytes. We calculated geometric mean concentrations, determined weighted 

Pearson correlations, and used linear regression to evaluate associations of sex, age (3–5 vs 6–11 

years), race/ethnicity (Hispanic vs non-Hispanic), household income, and body mass index with 

concentrations of PFAS detected in more than 60% of participants. We detected PFOS, PFOA, 

PFHxS, and PFNA in all children at concentrations similar to those of NHANES 2013–2014 

adolescents and adults, suggesting prevalent exposure to these PFAS or their precursors among 

U.S. 3–11 year old children, most of whom were born after the phase out of PFOS in the United 

States in 2002. PFAS concentration differences by sex, race/ethnicity, and age suggest lifestyle 

differences that may impact exposure, and highlight the importance of identifying exposure 

sources and of studying the environmental fate and transport of PFAS.
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1. Introduction

Per- and polyfluoroalkyl substances (PFAS) have been in use for over 60 years in a variety 

of industrial and commercial applications, such as surfactants, lubricants, paper and textile 

coatings, polishes, food packaging, and fire-retarding foams (ATSDR, 2015; DeWitt, 2015; 

Lau et al., 2007; Prevedouros et al., 2006). Because of their chemical inertness and heat 

stability, several PFAS persist and bioaccumulate in the environment, and certain PFAS, 

such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), are 

ubiquitous contaminants detected worldwide in occupationally exposed workers and general 

populations, as well as in wildlife (ATSDR, 2015; DeWitt, 2015).

Considerable amount of animal data suggest potential adverse health effects related to 

exposure to PFOA and PFOS (other PFAS have not been evaluated as extensively) including 

hepatotoxicity, tumor induction, developmental toxicity, immunotoxicity, neurotoxicity, and 

endocrine disruption (Corsini et al., 2012, 2014; DeWitt, 2015; Kennedy et al., 2004; Lau et 

al., 2004, 2007). However, the relevance of these animal data for human health is somewhat 

unclear because of the much shorter half-life of PFAS in animals compared to humans, and 

the possible dependence of toxicity on a peroxisome proliferation mechanism likely to be 

not as important in humans (DeWitt, 2015; Grandjean and Clapp, 2014; Steenland et al., 

2010). Because animals and humans sometimes process chemicals differently, additional 

research will help scientists fully understand how PFAS may affect human health.

Epidemiologic research findings on the potential health effects from exposure to PFAS in 

humans, albeit inconsistent, cover a wide spectrum of outcomes, mainly associated with 

exposures to PFOA and PFOS, including increased serum cholesterol, low-density 

lipoprotein and uric acid, thyroid, cardiovascular and kidney diseases, altered liver enzyme 

activities, lengthened time-to-pregnancy, early onset of menopause, delays in age of 

menarche, abnormal fetal growth and development, attention deficit hyperactivity disorder, 

and reduced immune responses in children, (Apelberg et al., 2007; ATSDR, 2015; DeWitt, 

2015; Fei et al., 2007, 2008, 2010; Granum et al., 2013; Gump et al., 2011; Hamm et al., 

2010; Lopez-Espinosa et al., 2011; Nolan et al., 2009; Olsen et al., 2009; Stein et al., 2014; 

Stein and Savitz, 2011; Washino et al., 2009). These inconsistencies among human studies 

stress the need for additional research to assess the potential impact of exposures to PFAS, 

especially in children, a vulnerable segment of the population.

Dietary intake, indoor air and house dust, drinking water, and use of products containing 

PFAS are potential sources of exposure to these compounds (ATSDR, 2015; DeWitt, 2015). 

Of late, PFAS have been detected increasingly in drinking water supplies around the world 

including the United States (Boiteux et al., 2012; Ericson et al., 2009; Filipovic et al., 2015; 

Hoffman et al., 2011; Hu et al., 2016; Post et al., 2012, 2013; Sun et al., 2016; Thompson et 

al., 2011; Weiss et al., 2012; Wilhelm et al., 2010), and in 2016, the U.S. Environmental 

Protection Agency (EPA) established a 70 parts per trillion drinking water health advisory 

level of PFOS and PFOA (U.S.EPA, 2016). Health advisories, which are non-enforceable 

and non-regulatory, provide technical guidance to state, local and tribal governments and 

drinking water system operators so that they can determine if concentrations of chemicals in 

tap water from public utilities are safe for drinking and other use. Under the U.S. EPA 
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Unmonitored Contaminant Monitoring Rule, from 2013 to 2016 all U.S. public water 

systems (PWS) serving 10,000 or more customers (and a representative sample of those 

serving ≤10,000 people) tested their supplies for six PFAS including PFOA, and PFOS. As 

of January 2017, of 4920 PWS with results for PFOS and PFOA, 46 (for PFOS) and 13 (for 

PFOA) serving millions of Americans had detections at or above the EPA’s health advisory 

level (U.S.EPA, 2016). These findings have contributed, at least in part, to increased interest 

in PFAS-related research in recent years.

Assessing human exposure to PFASs can provide information useful for understanding their 

potential adverse health effects. Yet, PFAS data among young children (Gump et al., 2011; 

Harris et al., 2017; Kim et al., 2014; Pinney et al., 2014; Schecter et al., 2012; Stein and 

Savitz, 2011; Toms et al., 2009; Wu et al., 2015; Zhang et al., 2010), albeit important 

because of children’s potential vulnerability to environmental insults, are not as common as 

data in adults. Until now, information on the extent of PFAS exposure among children in the 

United States was limited to a convenience group of 200 Texas children (0 to < 13 years of 

age) sampled in 2009 (Schecter et al., 2012), and children who participated in 

epidemiological studies conducted to evaluate the potential health impacts of exposure to 

environmental contaminants, including PFAS (Gump et al., 2011; Harris et al., 2017; Pinney 

et al., 2014; Stein and Savitz, 2011; Wu et al., 2015).

PFAS have been measured in the U.S. National Health and Nutrition Examination Survey 

(NHANES) for participants 12 years of age and older since 1999–2000 (CDC, 2017). 

However, because the volume of serum collected from preadolescents is limited, NHANES 

PFAS exposure data among persons younger than 12 years are limited to one report of 

concentrations using pooled sera collected in NHANES 2001–2002 from children 3–11 

years old (Kato et al., 2009). Having nationally-representative exposure information among 

young children is of public health interest in view of the recent detection of some PFAS in 

drinking water systems (Hu et al., 2016), and in residents, including children, of affected 

communities throughout the United States (Hoffman et al., 2011; Landsteiner et al., 2014; 

New Hampshire Department of Environmental Services, 2017; Vermont Department of 

Health, 2017). Therefore, we quantified PFAS in NHANES 2013–2014 children sera, and 

report here the first nationally representative data on the serum concentrations of 14 PFAS in 

the U.S. general population 3–11 years of age, stratified by age group, sex, and race/

ethnicity.

2. Materials and methods

2.1. Survey design

NHANES, conducted by the National Center for Health Statistics (NCHS) at the Centers for 

Disease Control and Prevention (CDC), is an ongoing survey designed to measure the health 

and nutritional status of the civilian noninstitutionalized U.S. population (CDC, 2014). The 

survey includes household interviews, standardized physical examinations, and collection of 

medical histories and biologic specimens, some of which are used to assess exposure to 

environmental chemicals (CDC, 2014). The NCHS Research Ethics Review Board reviewed 

and approved the NHANES study protocol. Parents or guardians provided written consent 

for all participants < 18 years of age (CDC, 2014).
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For this study, we quantified 14 PFAS in serum, originally collected for the measurement of 

cotinine, from a random one-third subsample of 639 NHANES 2013–2014 participants 3–11 

years of age. Because the subsample was random, the representative design of the survey 

was maintained. The sera had been shipped on dry ice to CDC’s National Center for 

Environmental Health where it was stored at or below −20 °C until analysis.

2.2. Laboratory method

We used a modification of a published on-line solid-phase extraction coupled to high-

performance liquid chromatography–isotope dilution–tandem mass spectrometry (on-line 

SPE-HPLC–MS/MS) approach (CDC, 2016) to quantify the following 14 PFAS: 

perfluorooctane sulfonamide (FOSA, PFOSA), 2-(N-methyl-perfluorooctane sulfonamido) 

acetic acid (MeFOSAA, Me-PFOSA-AcOH), 2-(N-ethyl-perfluorooctane sulfonamido) 

acetic acid (EtFOSAA, Et-PFOSA-AcOH), perfluorobutane sulfonic acid (PFBS), 

perfluorohexane sulfonic acid (PFHxS), per-fluoroheptanoic acid (PFHpA), 

perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid 

(PFUnDA), perfluorododecanoic acid (PFDoDA), linear PFOA (n-PFOA), sum of branched 

isomers of PFOA (Sb-PFOA), linear PFOS (n-PFOS), and sum of perfluoromethylheptane 

sulfonate isomers (Sm-PFOS). Briefly, after dilution with formic acid and addition of stable 

isotope internal standards, one aliquot of 50 µL of serum was injected into a commercial 

online SPE Symbiosis system (Spark Holland, Plainsboro, NJ) for the preconcentration of 

the analytes on a HySphere C8-SE (7 µM) cartridge (i-Chrome solutions, Plainsboro, NJ). 

The analytes were then backeluted onto a pair of Chromolith® HighResolution RP-18e 

columns (4.6 × 100 mm, Merck KGaA, Germany) for HPLC separation, and detected by 

negativeion TurboIonspray-MS/MS on an ABSciex 5500 or ABSciex 6500 Q trap mass 

spectrometer (Applied Biosystems, Foster City, CA). The limits of detection (LODs) were 

0.1 ng/mL for all analytes. The method accuracy, calculated from the recovery at three 

spiking levels, ranged from 90% to 113%. We prepared low-concentration and high-

concentration quality control materials (QCL and QCH, respectively) after spiking pools of 

commercial calf serum, and analyzed these QCs with standards, reagent and serum blanks, 

and NHANES samples. The precision of the measurements, expressed as the relative 

standard deviation of inter- and intra-day measurements of those QCs in a period of 

approximately 6 months, varied from 7.4% to 15.8% (QCL) and 6.3% to 11.9% (QCH), 

depending on the analytes. Adequate performance and accuracy of the method have been 

further confirmed by successful ongoing participation in two international interlaboratory 

comparison programs, namely the German External Quality Assessment Scheme (G-

EQUAS) for PFOS and PFOA in serum, organized and managed by the Institute and 

Outpatient clinic for Occupational, Social and Environmental Medicine of the University of 

Erlangen-Nuremberg in Germany (since 2006), and the Arctic Monitoring and Assessment 

Program (AMAP) Ring Test, conducted by the Institut National de Santé Publique du 

Québec in Canada, for several PFAS, including PFHxS, PFOS, PFOA, and PFNA, in serum 

(since 2010). Details of the analytical method and quality assurance/QC procedures used are 

available on the NHANES website (CDC, 2016).
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2.3. Statistical analysis

We used SAS (version 9.3; SAS Institute Inc., Cary, NC) and SUDAAN (version 11; 

Research Triangle Institute, Research Triangle Park, NC). SUDAAN incorporates sample 

weights and design variables to account for the complex design of NHANES. As 

recommended by NCHS, we used the subsample population WTSS2YR weights to produce 

estimates that are representative of the U.S. population. We used sampling weights and 

variance estimation (Taylor Series Linearization Method) appropriate for the complex survey 

design; estimates of the proportion of detectable results were also weighted. We defined two 

major racial/ethnic groups based on self-reported data: Hispanic (includes Mexican 

American and Other Hispanic) and non-Hispanic (includes non-Hispanic white, non-

Hispanic black, non-Hispanic Asian, and other race, including multiracial). We categorized 

age in two groups: 3–5 and 6–11 years. Participants-reported annual household income, 

available in $5000 increments, ranged from < $5000 to > $75,000; to obtain comparable 

number of participants by income group, we categorized income as < $45,000 and > 

$45,000. We calculated body mass index (BMI) in Kg/m2 using participants’ weight and 

height, and calculated BMI percentiles for age and sex using CDC reference data (CDC, 

2002). We classified BMI weight status category as underweight (< 5%), normal weight 

(≥5– < 85%), overweight (85– < 95%), or obese (≥95%) (CDC, 2015), and used two BMI 

groups to obtain comparable number of participants: underweight/ normal weight (<85%) 

and overweight/obese (≥85%). Statistical significance was set at p < 0.05. For PFAS 

concentrations below the LOD, as recommended for the analysis of NHANES data, we used 

a value equal to the LOD divided by the square root of 2 (Hornung and Reed, 1990). We also 

summed the concentrations of branched and linear isomers of PFOA and PFOS to obtain the 

“total” concentrations: ΣPFOS = Sm-PFOS + n-PFOS, ΣPFOA = Sb-PFOA + n-PFOA 

(CDC, 2017). We replaced any isomer concentration < LOD with the imputed value before 

estimating the sum.

We calculated geometric means (GM) for ΣPFOS, ΣPFOA and only for analytes detected in 

≥60% of the samples (CDC, 2017), and select percentiles, and 95% confidence intervals (CI) 

for ΣPFOS, ΣPFOA, and the other 14 PFAS for the total number of participants and by sex, 

race/ ethnicity, and age groups described above. We also calculated the correlations among 

the PFAS log10 concentrations for analytes with detection frequencies above 60%.

We conducted weighted univariate analyses (one way ANOVA) and multivariable linear 

regression using the log transformed concentrations of ZPFOS, ZPFOA, and five other 

PFAS detectable in at least 60% of participants by age group, sex, race/ethnicity category, 

BMI, and household income. We included age group, sex, race/ethnicity category, and, 

because of the small degrees of freedom, either BMI or household income in the 

multivariable linear regression. To reach the final multivariable regression models, we used 

backward elimination including all the two–way interaction terms, with a threshold of p < 

0.05 for retaining the variable in a model, using Satterwaite-adjusted F statistics. We 

evaluated potential effect modifiers by adding one by one each of the excluded variables into 

the model and examining changes in the β coefficients of the statistically significant main 

effects. If addition of one of these excluded variables caused a change in a β coefficient by 

≥10%, the variable was re-added to the model.
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3. Results and discussion

We quantified 14 PFAS in 639 sera collected from a nationally-representative random one-

third subsample of participants 3–11 years of age from NHANES 2013–2014. Among the 

samples analyzed, 181 (weighted 32.67%) were from children 3–5 years old, 343 (weighted 

51.32%) were from boys, 220 (weighted 24.78%) were from Hispanics, 374 (weighted 

48.38%) were from children whose family reported a household income below $45,000, and 

409 (weighted 68%) were from children underweight or with a normal BMI. The GM and 

select percentiles of serum concentrations, sample size, and weighted detection frequency by 

demographic characteristics for ΣPFOS, ΣPFOA, and the 14 quantified PFAS are in Tables 

1–4 and S1–S12.

We detected n-PFOA, n-PFOS, Sm-PFOS, PFHxS, and PFNA in all children (Tables 3–4, 

Tables S1–S3). By contrast, we detected other PFAS not as frequently (Tables S4–S12): 

MeFOSAA (53%), PFDA (47%), Sb-PFOA and PFUnDA (28%), PFHpA (19%), PFBS 

(5%), FOSA and EtFOSAA (3%), and PFDoDA (0%). The PFAS concentrations among 

these young children agreed relatively well with those reported among the U.S. general 

population of adolescents and adults during the same time period (CDC, 2017).

The GM (95% CI) concentrations (in ng/mL) of ΣPFOS and ΣPFOA were 3.88 (3.53–4.27), 

and 1.92 (1.75–2.12), respectively (Tables 1–2), and of the most frequently detected PFAS 

were: 2.51 (2.30–2.74) for n-PFOS, 1.81 (1.64–2.01) for n-PFOA, 1.23 (1.09–1.40) for Sm-

PFOS, 0.843 (0.756–0.939) for PFHxS, and 0.794 (0.681–0.926) for PFNA (Tables 3–4 and 

S1–S4). Electrochemical fluorination (ECF) used in the United States from the 1950s until 

the early 2000s to manufacture PFAS, including PFOA and PFOS, yielded branched and 

linear isomers. After 3 M, the largest PFOS manufacturer worldwide, voluntarily stopped 

production of PFOS, PFOS precursors, and related compounds (including PFHxS and 

PFOA) in 2002, telomerization which produces almost exclusively linear compounds, 

replaced ECF (ATSDR, 2015; DeWitt, 2015). The detection of Sm-PFOS in all children and 

of Sb-PFOA in approximately a quarter of them suggests exposure to PFAS produced by 

ECF, even among children born approximately a decade after discontinued ECF production 

in the United States. In these NHANES 2013–2014 children, Sm-PFOS was approximately 

1/3 of ΣPFOS, a proportion similar to that among adolescent (12–19 years of age) and adult 

(≥20 years of age) NHANES 2013–2014 participants (CDC, 2017). Children’s exposure to 

branched PFOS/PFOA isomers may have occurred early in life during gestation because 

PFAS can cross the placenta (Apelberg et al., 2007; ATSDR, 2015; Cariou et al., 2015; Chen 

et al., 2017; DeWitt, 2015; Kato et al., 2014; Lee et al., 2013; Porpora et al., 2013; Yang et 

al.,2016) or during infancy through breastfeeding, a known PFAS exposure pathway 

(Antignac et al., 2013; ATSDR, 2015; Cariou et al., 2015; DeWitt, 2015; Forns et al., 2015; 

Kang et al., 2016; Mondal et al., 2014). However, with the available information, we cannot 

rule out postnatal exposure to branched isomers through use of consumer products 

manufactured before the changes in PFAS production in the United States or that are still 

manufactured elsewhere by the ECF process (Xie et al., 2013).

These NHANES data confirm previous reports of exposure to several PFAS in U.S. children 

(Harris et al., 2017; Pinney et al., 2014; Schecter et al., 2012; Wu et al., 2015), including 
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children exposed to PFAS from consumption of drinking water accidentally contaminated 

with PFAS (Mondal et al., 2012; New Hampshire Department of Environmental Services, 

2017; Stein and Savitz, 2011). Compared with these other studies in most of which serum or 

plasma samples were collected years ago, the GM concentrations of ΣPFOS, ΣPFOA, 

PFHxS and PFNA in NHANES 2013–2014 participants 3–11 years of age were among the 

lowest (Fig. 1). As expected, concentrations of PFOS, PFOA, and PFHxS were generally 

higher in children whose samples were collected in the mid- to late-2000s, after production 

and/or emissions of PFOS, PFOA, and related chemistries were expected to decline in the 

United States (ATSDR, 2015; Wang et al., 2017). Of interest, concentrations (GM or 

median) of PFOA were highest among children who participated in the C8 study, a project 

involving residents in Mid-Ohio Valley communities who consumed drinking water 

contaminated with PFOA from factory emissions of a nearby manufacturing plant (Frisbee 

et al., 2009; Mondal et al., 2012). Similarly, although samples were collected in 2015, 

children< 12 years of age who consumed PFAS-contaminated drinking water at the Pease 

International Tradeport in New Hampshire had GM concentrations of PFOS, PFOA, and 

PFHxS considerably higher than those from NHANES 2013–2014 children and similar to 

those reported for other populations of U.S. children known to have been exposed to PFAS 

through consumption of contaminated drinking water (Mondal et al., 2012; New Hampshire 

Department of Environmental Services, 2017; Pinney et al., 2014).

Among NHANES 2013–2014 children, we observed statistically significant (all p < 0.01) 

correlations between the log-transformed concentrations of Sm-PFOS and n-PFOS (Pearson 

correlation coefficient (r) = 0.60), n-PFOA (r = 0.46), and PFHxS (r = 0.52); between n-

PFOA and n-PFOS (r = 0.50), and PFHxS (r = 0.45); and between n-PFOS and PFHxS (r = 

0.58) (Table S13). Correlations of PFNA with the other four PFAS were also statistically 

significant (all p < 0.01) but not as strong (Table S13): Sm-PFOS (r = 0.27); n-PFOA (r = 

0.39); n-PFOS (r = 0.35); PFHxS (r = 0.24). The relatively strong correlations between Sm-

PFOS, n-PFOS, n-PFOA, and PFHxS, and to a lesser extent, PFNA, suggest similar or 

common background source(s) or pathway(s) of exposure among the general population for 

these PFAS, as also suggested from previous NHANES results (Calafat et al., 2007a).

The GM concentrations from the weighted univariate regression analyses of ΣPFOS, 

ΣPFOA, and the five PFAS (n-PFOA, n-PFOS, Sm-PFOS, PFHxS, and PFNA) detected in at 

least 60% of participants are shown in Table 5. For ΣPFOS and Sm-PFOS, non-Hispanics 

had significantly higher (p = 0.0324 and 0.0483, respectively) GMs than Hispanics, and 

children 6–11 years old had higher GMs than the 3–5 year olds (p = 0.0004 and 0.0005, 

respectively); GMs by sex, BMI, or household income did not differ significantly (Table 

S14). GM concentrations of n-PFOS were significantly higher among the 6–11 year olds 

compared to the younger children (p = 0.0016); differences by race/ethnicity, sex, BMI, or 

household income did not reach statistical significance (Table S14). Similarly, for ΣPFOA 

and n-PFOA, GM concentrations were higher in non-Hispanic compared to Hispanic 

children (p = 0.0038 and 0.0045, respectively); GMs by age group, or sex did not differ 

significantly, and differences by BMI or household income were of borderline significance 

(Table S14). For PFHxS, 6–11 year olds had higher GM concentrations than the 3–5 year 

olds (p = 0.0119), and boys had higher GM concentrations than girls (p = 0.0035); we 

observed no significant differences by race/ethnicity, BMI or household income (Table S14). 
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We did not observe significant differences in PFNA GMs by age, sex, race/ethnicity, BMI, or 

income (Table S14).

The final multivariate regression models did not retain BMI or household income for any of 

the biomarkers examined (Table 6). Instead, the final models included race/ethnicity, age, 

sex, age × race/ ethnicity, age × sex for ΣPFOS; age, sex, age × sex for n-PFOS; race/

ethnicity, age, and age × race/ethnicity for Sm-PFOS; race for ΣPFOA and n-PFOA; and age 

and sex for PFHxS; we found no association between the demographic variables evaluated 

and PFNA (Tables 6 and S14). For ΣPFOS and n-PFOS, 6–11 year olds had significantly 

higher adjusted GM concentration than 3–5 year olds, but only among boys (p = 0.0003 and 

0.0017, respectively), and 6–11 year old boys had significantly higher adjusted GM 

concentrations than girls 6–11 years of age (p = 0.0048 and 0.0016, respectively). Similarly, 

for Sm-PFOS, 6–11 year olds had significantly higher adjusted GM than 3–5 year olds, but 

only among non-Hispanic children (p = 0.0005), and Hispanic 6–11 year old children had 

significantly lower concentrations than non-Hispanics (p = 0.0006). Regardless of age, 

Hispanic children had significantly lower ΣPFOA (p = 0.0038) and n-PFOA (p = 0.0045) 

than non-Hispanics. Children 6–11 years of age had higher adjusted GM concentrations of 

PFHxS than younger children (p = 0.0123), and boys had higher concentrations than girls 

(0.0047).

The multivariate regression analyses suggested higher concentrations of PFOS (ΣPFOS, n-

PFOS, Sm-PFOS) and PFHxS in older compared to younger children (Tables 6 and S14); 

these associations were modified by sex and/or race/ethnicity. Concentrations of some PFAS 

were previously reported to increase with age (Haug et al., 2009; Karrman et al., 2006; Kim 

et al., 2014; Schecter et al., 2012), partially due to the persistence of these chemicals in the 

environment and in humans. It is also possible that younger persons were exposed to lower 

levels of PFOS and PFHxS than older people because of changes in PFAS manufacturing 

practices since the early 2000s (ATSDR, 2015; DeWitt, 2015). However, the positive 

association between age and PFAS in people was not always evident (Calafat et al., 2007a; 

Kannan et al., 2004; Kato et al., 2009; Zhang et al., 2010), as our study also suggested that 

age was only positively associated with ΣPFOS and n-PFOS in boys, but not in girls; and in 

non-Hispanics, but not in Hispanics for Sm-PFOS. Age was not even associated with 

ΣPFOA and n-PFOA concentrations.

The multivariate regression analyses suggesting associations with race/ethnicity for PFOA 

and PFOS (Tables 6 and S14), agree with previous nationally-representative NHANES data 

(Calafat et al., 2007a) which showed that Mexican Americans had lower concentrations of 

PFOA and PFOS than persons of non-Hispanic race. Racial differences in PFAS 

concentrations may relate to lifestyle, diet, and use of PFAS-containing products. 

Furthermore, the multivariate regression analyses suggested associations with sex for 

PFHxS, and with sex and age or race/ethnicity for PFOS. Concentrations of some PFAS in 

adults have been reported to differ with sex, with adult males having higher concentrations 

than adult females (Calafat et al., 2007a,b; Fromme et al., 2007; Holzer et al., 2008; Yeung 

et al., 2006) because women may decrease their PFAS body burden through gestation, 

breastfeeding, or menstruation (ATSDR, 2015; DeWitt, 2015). However, an association by 

sex was not observed before in children, including studies using data from pooled sera 
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collected from NHANES 2001–2002 children (Kato et al., 2009) or from infants and 

children in Queensland, Australia (Toms et al., 2009), and from individual sera collected 

from a convenience group of Texas infants and children between 0 and 12 years of age 

(Schecter et al., 2012), and from South Korea children 5–13 years of age (Kim et al., 2014). 

The sex-related associations for PFOS and PFHxS concentrations among NHANES 2013–

2014 children are difficult to explain because factors that support lower PFAS concentrations 

in women compared to men (i.e., gestation, breastfeeding, menstruation) are not expected to 

apply to young age children.

The GM concentrations of ΣPFOS and ΣPFOA in these 3–11 year olds from NHANES 

2013–2014 (Tables 1–2) were comparable to the GM concentrations among NHANES 

2013–2014 adolescent and adult participants (CDC, 2017). The GM concentration (95% CI) 

of ΣPFOS was significantly higher in NHANES 2013–2014 participants 12 years and older 

[4.99 (4.50–5.52) ng/mL] than in children 3–11 years of age [3.88 (3.53–4.27) ng/mL]. 

However, for ΣPFOA GMs (95% CI) were similar [1.94 (1.76–2.14) ng/mL for persons ≥12 

years and older, and 1.92 (1.75–2.12) ng/mL for 3–11 years old]. The ΣPFOS upward trend 

with age may relate to the fact that older persons would have experienced past higher 

exposures to PFOS than these young children because the largest PFOS manufacturer 

stopped production of PFOS in 2002 (ATSDR, 2015; DeWitt, 2015). By contrast, the lack of 

an age trend for ΣPFOA may be explained by the ongoing production of PFOA, PFOA 

precursors (e.g., fluorotelomer-based compounds (Butt et al., 2014)), and related homolog 

chemicals at the time of NHANES 2013–2014—even though environmental emissions and 

product content levels of these chemicals were substantially reduced since 2006 thanks in 

part to the 2010/2015 PFOA Stewardship Program, a partnership between the U.S. EPA and 

eight major companies in the PFAS industry (ATSDR, 2015; DeWitt, 2015; US EPA, 2006).

In summary, we present the first nationally representative data on the serum concentrations 

of 14 PFAS in the U.S. general population 3–11 years of age, stratified by age group, sex, 

and race/ethnicity. The detection of five PFAS (n-PFOS, Sm-PFOS, n-PFOA, PFHxS, 

PFNA) in all samples analyzed and the similar GM concentrations of these PFAS in 3–11 

year old children as in adolescents and adults participating in NHANES 2013–2014 confirm 

widespread exposure to these PFAS even among young Americans. Even children born after 

the major U.S. manufacturer voluntarily discontinued ECF production in 2002 of PFOS 

precursors and related compounds in the United States were exposed to PFAS manufactured 

by ECF. The reported PFAS concentration differences by sex, race/ethnicity, and age 

highlight the need for additional research to identify sources of human exposure to PFAS 

and to study the environmental fate and transport of these chemicals. Last, these NHANES 

data can be used to establish a nationally representative baseline of exposures to PFAS 

among pre-school and elementary-school aged children that can be used to identify higher-

than background exposures among children throughout the United States.
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Fig. 1. 
Comparison of geometric mean concentrations of ΣPFOS, ΣPFOA, PFHxS, and PFNA in 

several groups of U.S children: U.S. general population of 3–11 years (this work), Texas 

children (N = 200) 0 to < 13 years* (Schecter et al., 2012), Boston-area Project Viva 

children (N = 653) 6–10 years (Harris et al., 2017), Northern California SUPERB study 

children (N = 68) 2 to < 8 years (Wu et al., 2015), Greater Cincinnati BCERP girls (N = 

353) 6–8 years (Pinney et al., 2014), San Francisco Bay Area BCERP girls (N = 351) 6–8 

years (Pinney et al., 2014), New Hampshire PEASE children (N = 366) <12 years (New 

Hampshire Department of Environmental Services, 2017), C8 Health Project infants (N = 

49) (Mondal et al., 2014), and C8 Health Project children (N = 10,546) 5–18 years* (Stein 

and Savitz, 2011).

*Denotes that concentrations are medians.
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